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Conclusions
The application of the � nite strip method to supersonic � utter of

composite laminated panels has been presented. The present for-
mulations are for symmetric laminates but it is easy to extend the
formulations to general laminated plates. Based on the present re-
sults, the following conclusions can be made:

1) For isotropic panels, the number of strips and series terms
that required giving satisfactory results by the � nite strip method is
dependent on the � ow angularity.

2) When � ber orientationis not alignedwith the x- or y-direction,
increasing series terms will rapidly improve the accuracy of the
results.

3) Flutter boundary (k cr) is independentof the series terms when
the air� ow is along the x-direction (K = 0±) and is independent of
the strip numbers when the air� ow is along y-direction (K =90±).
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Introduction

E STIMATION of stability and control derivatives or of nonlin-
ear unsteadyaerodynamiceffects from� ightdata is a subjectof

continuousinterest.The time-domainapproachbased on the output
error method is widely used for this purpose.1 ¡ 3 It leads to a nonlin-
ear optimization problem, which is solved mostly using the uncon-
strained Gauss–Newton method. Parameter estimation subject to
simple bounds can, however, be relevant in some cases. Two typical
applicationsare the following:1) parameters that describe the phys-
ical effects, in the present case aerodynamic effects, are often con-
strained to lie in a certain range, for example, the Oswald’s factor4

characterizing the increase in drag over ideal condition caused by
nonelliptical lift distribution and interference is typically limited to
less than one or the time delay is always positive and hence greater
than zero; and 2) estimation of highly nonlinear model parameters
such as friction, which may lead to numerical dif� culties caused
by different reasons like poor guess of initial values.5 Incorporation
of such lower and upper bounds in aircraft parameter estimation
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using the Gauss–Newton method has not been hitherto reported in
the literature. This Note, therefore, addresses the issues pertain-
ing to extending the Gauss–Newton method to account for simple
bounds and also demonstrates that the active-set strategy provides
an ef� cient solution retaining the desirablepropertiesof the Gauss–

Newton method, namely, quadratic convergence and availability of
statistical information regarding the accuracy of the estimates.

Problem Formulation
In the general case a dynamic system is represented as

Çx(t) = f [x(t ), u(t ), k ] x(t0) = x0 (1)

y(t ) = g[x(t), u(t ), k ] (2)

z(tk ) = y(tk ) + v(tk ) k = 1, 2, 3, . . . , N (3)

where x is the n-dimensional state vector, y the m-dimensional ob-
servation vector, and u the p-dimensional control input vector. The
system functions f and g are general nonlinear real valued vector
functions. The measurement vector z is sampled at N discrete time
points tk , and the noise vectorv is assumed to be a sequenceof inde-
pendent Gaussian random variables with zero mean and covariance
matrix R. It is required to estimate the unknown system parameters
k and the initial conditions x0 as well as the measurement noise
covariance matrix R.

Unconstrained Gauss–Newton Method
The maximum likelihood estimates of the unknown parameters

and of the unknown noise covariance matrix are obtained by mini-
mizing the cost function3,6:

J ( H , R) =
1

2

N

k = 1

[z(tk ) ¡ y(tk)]T R ¡ 1[z(tk ) ¡ y(tk)]T +
N

2
j R j

(4)

where H =[ k T , xT
0 ]T denotes the q-dimensionalvectorof unknown

parameters,whichmay beextendedto includebiaserrors in themea-
surements of responseand control input variables.6 Optimizationof
Eq. (4) is carried out in two steps. In the � rst step it can be shown
that for any given value of H the maximum likelihood estimate of
R is given by

R̂ =
1
N

N

k = 1

[z(tk) ¡ y(tk )][z(tk ) ¡ y(tk)]T (5)

Having obtained an estimate of R, any optimization method can
be applied to update the parameter vector H . The investigations
in the past have, however, demonstrated that the derivative-free
search methods such as Powell and downhill Simplex methods7

or Extrem8 and routinely available gradient-basedmethods such as
quasi-Newton, conjugate-gradient,or Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithms7 are much slower compared to the
Gauss–Newton method, particularly for estimation involving large
dynamicsystemswhere the computationaleffort to compute the sys-
tem responses and their gradients is high.9,10 For aircraft parameter
estimation purposes the Gauss–Newton method is therefore widely
used.1 ¡ 3 The unconstrainedGauss–Newton method yields the iter-
ative parameter update:

H i + 1 = H i + D H with D H = ¡ F ¡ 1G (6)

where the q £ q dimensional information matrix F and the
q-dimensional gradient vector G are given by

F =
@2 J

@H 2
¼

N

k = 1

@y(tk )

@H

T

R ¡ 1 @y(tk)

@H
(7)

G =
@J

@H
=

N

k = 1

@y(tk )
@H

T

R ¡ 1[z(tk ) ¡ y(tk)] (8)
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The response gradients @y / @H required to compute F and G using
Eqs. (7) and (8) are approximated using the � nite differences.

The maximum likelihood estimation being asymptotically bias
free and ef� cient, the information matrix F provides a good ap-
proximation to the parameter error covariance matrix.1,3 Standard
deviations of the estimates and coef� cients of correlation among
them can be readily obtained because the information matrix is al-
ready computed as a part of the optimization.

Bounded-Variable Gauss–Newton Method
Using Active Set Strategy

The linearly constrainedoptimizationproblem in which the con-
straints are simple bounds on the variables is formulated as

min
H

J ( H ) subject to H min · H · H max (9)

Optimization theory provides several approaches to solve this
problem, such as transformation of variables followed by uncon-
strained optimization, barrier function, or Lagrangian approach, or
active set strategy.7 Several software programs, for example, lim-
ited memory BFGS,11 Extrem,8 quasi-Newton,12 bounded-variable
Least Squares,13 provide solutions to this problem. However, as al-
ready pointed out the Gauss–Newton method is preferred here. The
active set strategy is conceptuallyvery appealingand can be readily
extended to the Gauss–Newton method.

Starting from the initiallyspeci� edparametervalues H 0 , an active
set, denoted as IA, containingthe indices of the variables hitting the
bounds is formedand updated in every iteration.A variable is called
a free variable, if it is within the permissible bounds, and hence not
in the active set. The Gauss–Newton search directions for the free
variables are computed as follows:

D H free = ¡ F ¡ 1
freeGfree (10)

where the information matrix Ffree and the gradient vector Gfree are
computed using Eqs. (7) and (8) respectively for the free variables.
The parameter updates resulting from Eq. (10) are checked for the
speci� ed bounds, and any violation leads to modi� cation of the ac-
tive set IA. For such parameters the values are set to the respective
boundsand the search directionsof Eq. (10) to zero. For the remain-
ing free parameters a new point is computed using a line search.

An important aspect of the active set strategy is to appropriately
alter the active set IA as the optimization progresses. The active
set is changed whenever a free variable hits its bounds during an
iteration. Furthermore, if the Kuhn–Tucker optimality conditions

(G i < 0, for H i = H i max) or

(G i > 0, for H i = H i min) (11)

are not satis� ed for any of the variables in the active set, then those
variables are dropped from the active set and made free; G i , H i ,
H i min , and H i max are respectively the components of the gradient
vectorgivenbyEq. (8), thecurrentparametervalue,and its lowerand
upper bounds. In other words, Eq. (11) guaranteesthat the gradients
for the variables hitting the bounds are such that they point outward
of the feasible region, implying that any further minimizationof the
cost functionwould be possibleonly when the particularparameters
are not constrained within the speci� ed limits.

The computationaloverhead to implement the active set strategy
in the existing Gauss–Newton method is minor; it is just required
to check for the variables that hit the bounds and for the optimality
conditions of Eq. (11) to update the active set. The advantages of
the approach are that the optimization method retains the quadratic
convergence property and, as already pointed out, the accuracy of
the parameter estimates can be readily obtained.

Example
To verify the extensionof the Gauss–Newton method to bounded

variables and to evaluate its performance,a typical example of esti-
mating lateral-directionalderivatives is considered. The � ight data
analyzedare for the clean con� gurationof a C-160 Transallmilitary
transport aircraft at 16,000 ft (4876 m) and an indicated airspeed

Table 1 Progress of the optimization

Cost function (Number of variables at bounds)

Unconstrained Bounded-variable
Iteration Gauss–Newton method Gauss–Newton method

0 5.135D-22 5.135D-22 (0)
1 5.681D-36 1.211D-34 (3)
2 7.097D-39 1.984D-38 (4)
3 5.085D-39 1.416D-38 (3)
4 5.025D-39 1.369D-38 (2)
5 5.023D-39 1.368D-38 (2)
6 5.023D-39 1.368D-38 (2)

of 160 knots.14 The equations of motion pertaining to the lateral-
directional motion are well documented in the literature and hence
not presented here; it would suf� ce to mention that the state vari-
ables are [ b , p, r , u , w ] and the control inputsare aileronand rudder
de� ections [ d a , d r ].

The rolling moment coef� cient for this trim point is modeled as

Cl = Cl b b + Cl p p + Clr r + Cl d a d a + Cl d r d r (12)

where b is the angle of sideslip, p the roll rate, and r the yaw rate;
it is required to estimate the derivatives [Cl b , Clp , Clr , Cl d a , Cl d r ]
along with those for the yawing moment coef� cient Cn and side-
force coef� cient CY . Parameter estimation is carried out applying
the conventional unconstrained Gauss–Newton and the bounded-
variable Gauss–Newton method presented in this Note. During the
bounded-variable Gauss–Newton method, for demonstration pur-
poses the lower and upper limits were speci� ed arbitrarily for four
parametersCl b , Cl d a , Cl d r , and Cnb . The progressof the optimization
in termsof cost functionis shownin Table1. The observationis made
that for this example the bounded-variableGauss–Newton method
requires the same number of iterations to converge to the minimum.
The � rst iteration step of the bounded-variablemethod leads to three
parametershitting the bounds and the second iteration to four as ev-
ident from the numbers given in the brackets. The third iteration,
however, leads to violation of the optimality condition mentioned
in the foregoingsection for one of the parameters,namely,Cl d a , and
hence it is droppedfrom the active set and made free. The same hap-
pens for another parameterCl d r during the next iteration, and hence
the numberof variablesin theactiveset is furtherreducedto two. For
all subsequent iterations the parameters Cl b and Cnb remain at their
boundssatisfyingthe optimalitycondition.Salient featuresof work-
ing of the active set strategy, i.e., the process of variables entering
in or dropping out of active set, are broughtout in Fig. 1, which pro-
vides comparative plots showing the convergence of the estimates
and the respective bounds for dihedral effect Cl b , aileron effective-
ness Cl d a , and rolling moment caused by rudder de� ection Cl d r .

As usually is the case, the unconstrainedoptimizationleads in this
case also to a lower minimumcomparedto the bounded-variableop-
timization.The differencesin convergednumericalvaluesofTable 1
may appear to be somewhat large. However, it needs to be remem-
bered that the cost function represents the determinant of the co-
variance matrix accounting for multiple observation variables and
is extremely small in value; in terms of the match between the � ight
measured and model predicted responses, not shown here, hardly
any differenceswere apparent in the two cases.The estimatesof Cl d a

and Cl d r agreed well within scatter given by the standard deviations
of the parameter estimates. The minor differences seen in Figs. 1b
and 1c respectively are attributed to the bound optimization.

In the foregoing example and in some other test cases not pre-
sented here, the observation was made that the bounded-variable
Gauss–Newton method usually required the same number of it-
erations for the convergence. However, in some test cases it was
observed that the convergencewas affected, requiring typicallyone
or two additional iterations, particularly if the bounds were inap-
propriate.Thus, in general, some care is necessarywhile specifying
the parameter bounds. In some cases cycling of active-setvariables,
i.e., variablesenteringthe activeset on reachingthe boundsfollowed
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a) Dihedral effect

b) Aileron effectiveness

c) Rolling moment caused by rudder de� ection

Fig. 1 Iterative estimates of typical rolling moment derivatives.

immediately by indications to leave the active set, can result, par-
ticularly as the minimum of the cost function is approached. The
reasonfor this is twofold:1) the roundofferrorsbecomingdominant,
and the gradientscomputedusing the numericalapproximationsare
inaccurate;and 2) some variablesare approximatelylinearlydepen-
dent. This phenomenon was, however, not encountered in several
examplesof estimatingnonlinearaerodynamicparameterswith var-
ious degrees of complexity.

Errata
Implications of the Insensitivity

of Vortex Lift to Sweep

Lance W. Traub
Texas A&M University, College Station, Texas 77843-3141

[J. Aircraft 37 (3), pp. 531–532 (2000)]

EQUATION (6) should be:

C pv (x , y) = 1 ¡

³³
4.63 tan1.2 a cos a

³
2s

b

´

£ cos2

»
tan ¡ 1

³
1
zv
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y

s
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2p zv tan0.2 ²

´́2

On page 532, the second sentence of the last paragraph should
read: “This may be consideredan upper (or rearward) bound as the
wing sweep tends to 90 deg and the wing’s trailing-edgeextent tends
to 0.”

Conclusion
The widely used Gauss–Newton method for aircraft parameter

estimation in the time domain has been successfullyextended to ac-
count for simple bounds on the variables. From an engineer’s point
of view and for implementationpurposes, the active set strategy ap-
pears to be a simple, direct, and ef� cient approach.Additionally, the
approach retains all of the advantagesof the classicalunconstrained
Gauss–Newton at marginally larger computational overhead. The
method extends, in general, the scope of aircraft parameter estima-
tion by permitting the limitation of the variables to be estimated
within a speci� ed range. The performance of the bounded-variable
Gauss–Newton method presented in this Note was demonstratedon
a typical example of estimating the stability and control derivatives
pertaining to the lateral-directionalmotion of an aircraft from � ight
data.
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