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Conclusions

The application of the finite strip method to supersonic flutter of
composite laminated panels has been presented. The present for-
mulations are for symmetric laminates but it is easy to extend the
formulations to general laminated plates. Based on the present re-
sults, the following conclusions can be made:

1) For isotropic panels, the number of strips and series terms
that required giving satisfactory results by the finite strip method is
dependent on the flow angularity.

2) When fiber orientationis not aligned with the x- or y-direction,
increasing series terms will rapidly improve the accuracy of the
results.

3) Flutter boundary (4,) is independent of the series terms when
the airflow is along the x-direction (A =0°) and is independent of
the strip numbers when the airflow is along y-direction (A =90°).
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Introduction

STIMATION of stability and control derivatives or of nonlin-

ear unsteadyaerodynamiceffects from flightdatais a subjectof
continuousinterest. The time-domain approachbased on the output
error method is widely used for this purpose.! =3 It leads to a nonlin-
ear optimization problem, which is solved mostly using the uncon-
strained Gauss-Newton method. Parameter estimation subject to
simple bounds can, however, be relevantin some cases. Two typical
applicationsare the following: 1) parameters that describe the phys-
ical effects, in the present case aerodynamic effects, are often con-
strained to lie in a certain range, for example, the Oswald’s factor*
characterizing the increase in drag over ideal condition caused by
nonelliptical lift distribution and interferenceis typically limited to
less than one or the time delay is always positive and hence greater
than zero; and 2) estimation of highly nonlinear model parameters
such as friction, which may lead to numerical difficulties caused
by differentreasons like poor guess of initial values.’ Incorporation
of such lower and upper bounds in aircraft parameter estimation
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using the Gauss-Newton method has not been hitherto reported in
the literature. This Note, therefore, addresses the issues pertain-
ing to extending the Gauss-Newton method to account for simple
bounds and also demonstrates that the active-set strategy provides
an efficient solution retaining the desirable properties of the Gauss-
Newton method, namely, quadratic convergence and availability of
statistical information regarding the accuracy of the estimates.

Problem Formulation
In the general case a dynamic system is represented as

x() = flx(0), u(®), A] x(fh) =X 1
y(t) = glx(n), u(t), A1 )
Z(tk) = y(tk) + V(tk) k = 1, 2, 3, ey N (3)

where x is the n-dimensional state vector, y the m-dimensional ob-
servation vector, and u the p-dimensional control input vector. The
system functions f and g are general nonlinear real valued vector
functions. The measurement vector z is sampled at N discrete time
points #, and the noise vectorv is assumed to be a sequence of inde-
pendent Gaussian random variables with zero mean and covariance
matrix R. It is required to estimate the unknown system parameters
A and the initial conditions x, as well as the measurement noise
covariance matrix R.

Unconstrained Gauss-Newton Method
The maximum likelihood estimates of the unknown parameters
and of the unknown noise covariance matrix are obtained by mini-
mizing the cost function®®:

1+ N
J©.R) =23 [e() = )T R'[e(w) = )] + = talR|

k=1
4)

where ® =[A7, x] 1" denotes the g-dimensional vector of unknown
parameters, whichmay be extendedto includebias errorsin the mea-
surements of response and control input variables® Optimization of
Eq. (4) is carried out in two steps. In the first step it can be shown
that for any given value of ® the maximum likelihood estimate of
R is given by

Ll
R= 3 M0 - v llzw) - )l (5)

k=1

Having obtained an estimate of R, any optimization method can
be applied to update the parameter vector ®. The investigations
in the past have, however, demonstrated that the derivative-free
search methods such as Powell and downhill Simplex methods’
or Extrem® and routinely available gradient-based methods such as
quasi-Newton, conjugate-gradient, or Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithms’ are much slower compared to the
Gauss-Newton method, particularly for estimation involving large
dynamic systems where the computationaleffortto compute the sys-
tem responses and their gradients is high.>!° For aircraft parameter
estimation purposes the Gauss-Newton method is therefore widely
used.!~* The unconstrained Gauss-Newton method yields the iter-
ative parameter update:

O+ =0, + A® with A® =-F'G 6)

where the g X¢g dimensional information matrix F and the
q-dimensional gradient vector G are given by

_ 3 o] v
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The response gradients 0y/0® required to compute F* and G using
Eqgs. (7) and (8) are approximated using the finite differences.

The maximum likelihood estimation being asymptotically bias
free and efficient, the information matrix F' provides a good ap-
proximation to the parameter error covariance matrix."*> Standard
deviations of the estimates and coefficients of correlation among
them can be readily obtained because the information matrix is al-
ready computed as a part of the optimization.

Bounded-Variable Gauss-Newton Method
Using Active Set Strategy

The linearly constrained optimization problem in which the con-
straints are simple bounds on the variables is formulated as

min J(®) subjectto O <O <O, 9)
)

Optimization theory provides several approaches to solve this
problem, such as transformation of variables followed by uncon-
strained optimization, barrier function, or Lagrangian approach, or
active set strategy.” Several software programs, for example, lim-
ited memory BFGS,!! Extrem,? quasi-Newton,'> bounded-variable
Least Squares,'® provide solutions to this problem. However, as al-
ready pointed out the Gauss-Newton method is preferred here. The
active set strategy is conceptually very appealing and can be readily
extended to the Gauss-Newton method.

Starting from the initially specified parameter values ©, an active
set, denoted as A, containing the indices of the variables hitting the
boundsis formed and updatedin every iteration. A variableis called
a free variable, if it is within the permissible bounds, and hence not
in the active set. The Gauss-Newton search directions for the free
variables are computed as follows:

A®free = _F_leree (10)

free

where the information matrix Fi.. and the gradient vector Gy, are
computed using Egs. (7) and (8) respectively for the free variables.
The parameter updates resulting from Eq. (10) are checked for the
specified bounds, and any violation leads to modification of the ac-
tive set IA. For such parameters the values are set to the respective
boundsand the search directionsof Eq. (10) to zero. For the remain-
ing free parameters a new point is computed using a line search.
An important aspect of the active set strategy is to appropriately
alter the active set IA as the optimization progresses. The active
set is changed whenever a free variable hits its bounds during an
iteration. Furthermore, if the Kuhn-Tucker optimality conditions

(G,- <0, for O; = Oi_max) or
(G,- > 0, for ®i =®i_min) (11)

are not satisfied for any of the variables in the active set, then those
variables are dropped from the active set and made free; G;, ©;,
O;_min> and ©;_ ., are respectively the components of the gradient
vectorgivenby Eq. (8), the current parameter value,and its lower and
upper bounds. In other words, Eq. (11) guaranteesthat the gradients
for the variables hitting the bounds are such that they point outward
of the feasible region, implying that any further minimization of the
costfunction would be possible only when the particular parameters
are not constrained within the specified limits.

The computational overhead to implement the active set strategy
in the existing Gauss-Newton method is minor; it is just required
to check for the variables that hit the bounds and for the optimality
conditions of Eq. (11) to update the active set. The advantages of
the approach are that the optimization method retains the quadratic
convergence property and, as already pointed out, the accuracy of
the parameter estimates can be readily obtained.

Example
To verify the extension of the Gauss-Newton method to bounded
variables and to evaluate its performance, a typical example of esti-
mating lateral-directional derivatives is considered. The flight data
analyzed are for the clean configuration of a C-160 Transall military
transport aircraft at 16,000 ft (4876 m) and an indicated airspeed

Table 1 Progress of the optimization

Cost function (Number of variables at bounds)

Unconstrained Bounded-variable
Iteration Gauss-Newton method Gauss-Newton method
0 5.135D-22 5.135D-22(0)
1 5.681D-36 1.211D-34(3)
2 7.097D-39 1.984D-38 (4)
3 5.085D-39 1.416D-38 (3)
4 5.025D-39 1.369D-38 (2)
5 5.023D-39 1.368D-38 (2)
6 5.023D-39 1.368D-38 (2)

of 160 knots.'* The equations of motion pertaining to the lateral-
directional motion are well documented in the literature and hence
not presented here; it would suffice to mention that the state vari-
ablesare[f, p,r, ¢, y]and the control inputs are aileronand rudder
deflections [&,, S.].

The rolling moment coefficient for this trim point is modeled as

C,=CpB+Cpp +Cpr+ Cis0, + Ci5.6, (12)

where B is the angle of sideslip, p the roll rate, and r the yaw rate;
it is required to estimate the derivatives [C5, C,, C,, Ci5, Cis]
along with those for the yawing moment coefficient C, and side-
force coefficient Cy. Parameter estimation is carried out applying
the conventional unconstrained Gauss-Newton and the bounded-
variable Gauss-Newton method presented in this Note. During the
bounded-variable Gauss-Newton method, for demonstration pur-
poses the lower and upper limits were specified arbitrarily for four
parameters Cjg, Csq, Cisr, and C,5. The progressof the optimization
interms of costfunctionis shownin Table 1. The observationis made
that for this example the bounded-variable Gauss-Newton method
requires the same number of iterations to converge to the minimum.
The firstiteration step of the bounded-variablemethod leads to three
parameters hitting the bounds and the second iterationto four as ev-
ident from the numbers given in the brackets. The third iteration,
however, leads to violation of the optimality condition mentioned
in the foregoing section for one of the parameters, namely, C;s,, and
henceitis dropped from the active set and made free. The same hap-
pens for another parameter Cs during the nextiteration, and hence
the number of variablesin the active set is furtherreducedto two. For
all subsequentiterations the parameters C;3 and C,g remain at their
bounds satisfyingthe optimality condition. Salient features of work-
ing of the active set strategy, i.e., the process of variables entering
in or dropping out of active set, are broughtoutin Fig. 1, which pro-
vides comparative plots showing the convergence of the estimates
and the respective bounds for dihedral effect Cjg, aileron effective-
ness C;s,, and rolling moment caused by rudder deflection Cys, .

Asusuallyis the case, the unconstrainedoptimizationleadsin this
case also to a lower minimum compared to the bounded-variableop-
timization. The differencesin convergednumerical values of Table 1
may appear to be somewhat large. However, it needs to be remem-
bered that the cost function represents the determinant of the co-
variance matrix accounting for multiple observation variables and
is extremely small in value; in terms of the match between the flight
measured and model predicted responses, not shown here, hardly
any differenceswere apparentin the two cases. The estimates of C;s,
and C);5 agreed well within scatter given by the standard deviations
of the parameter estimates. The minor differences seen in Figs. 1b
and 1c respectively are attributed to the bound optimization.

In the foregoing example and in some other test cases not pre-
sented here, the observation was made that the bounded-variable
Gauss-Newton method usually required the same number of it-
erations for the convergence. However, in some test cases it was
observed that the convergence was affected, requiring typically one
or two additional iterations, particularly if the bounds were inap-
propriate. Thus, in general, some care is necessary while specifying
the parameter bounds. In some cases cycling of active-set variables,
i.e., variablesenteringthe active set on reachingthe bounds followed
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Fig. 1 Iterative estimates of typical rolling moment derivatives.

immediately by indications to leave the active set, can result, par-
ticularly as the minimum of the cost function is approached. The
reason for thisis twofold: 1) the roundofferrors becoming dominant,
and the gradients computed using the numerical approximationsare
inaccurate;and 2) some variables are approximately linearly depen-
dent. This phenomenon was, however, not encountered in several
examples of estimatingnonlinearaerodynamic parameters with var-
ious degrees of complexity.

Errata

Conclusion

The widely used Gauss-Newton method for aircraft parameter
estimationin the time domain has been successfullyextended to ac-
count for simple bounds on the variables. From an engineer’s point
of view and for implementation purposes, the active set strategy ap-
pears to be a simple, direct, and efficient approach. Additionally, the
approachretains all of the advantages of the classical unconstrained
Gauss-Newton at marginally larger computational overhead. The
method extends, in general, the scope of aircraft parameter estima-
tion by permitting the limitation of the variables to be estimated
within a specified range. The performance of the bounded-variable
Gauss-Newton method presented in this Note was demonstrated on
a typical example of estimating the stability and control derivatives
pertaining to the lateral-directionalmotion of an aircraft from flight
data.
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E QUATION (6) should be:

12 2s
Cp,(x,y) =1—(4.63tan"“ acosa 5
2
2{ —1(1 (y ))} 0.2 )
X cos“{ytan  |— = —, 2mz, tan"" €
Zy \S

On page 532, the second sentence of the last paragraph should
read: “This may be considered an upper (or rearward) bound as the
wing sweep tends to 90 deg and the wing’s trailing-edgeextent tends
to 0



